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It is shown that Fisher information (FI) can be considered as a limiting case of a related form of Kull-
back information—a shift information (SI). The compatibility of the use of SI with a basic physical
principle of uncertainty is demonstrated. The scope of FI based theory is extended to the nonlinear

Klein-Gordon equation.

PACS number(s): 05.40.+j, 02.30.+g, 03.40.—t, 11.10.Lm

I. INTRODUCTION

An extreme physical information principle is a general-
ization of the minimum Fisher information principle
(MFIP), which was found to be a unifying principle of
physics. As was shown by Frieden it gives a universal
motivation as well as the way for derivation of a variety
of equations and distributions in theoretical physics: the
Maxwell-Boltzmann and Boltzmann laws [1,2],
Schrodinger wave equation [1-3], Helmholtz wave equa-
tion [1,2], diffusion equation [1], Klein-Gordon equation
[1,2], Dirac equation [2,4], Maxwell equations [5], and
some uncertainty principles [2].

The conceptual basis for such derivations was a
gedanken experiment on seeking an expression for a
minimum mean-square error of estimation of the mean
parameter § characterizing the system of particles under
investigation. The particles may be material particles or
quasiparticles, photons, etc., and the physical parameter
{ may be a position coordinate, velocity, etc. As was
shown [1-5], the requirement that an efficient estimation
error is to be maximum results in

I{y} =4fd§k2(a¢s/a§k )>=extremum , (1)

where I{y¥} is a so-called Fisher information (FI),
E={&1,865 -..,6n} is a vector parameter. ¥, are the
well-behaved probability density amplitudes,

M
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s=1

so that p (&) is a probability density. (In this and subse-
quent cases the integration limits are from — o to +
unless otherwise specified.)

Frieden had discovered that all the above results are
the consequences of the principle (1) when an additional
constraint is imposed by, for example, the mean kinetic
energy. Operationally, MFIP is a variational problem:

I{y}—A(E,;,)=extremum . (3)

Other constraints (e.g., the normalization condition) may
be imposed as well. Sometimes instead of mean kinetic
energy, the constraint term should be a mean-squared en-
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ergy, as in relativistic quantum mechanics. I{} is as-
sumed to be a disorder measure in the system, so the
principle (3) is akin to the second law of thermodynamics.
The principle (3) may be also thought of as a “balance”
between the kinetic energy and disorder.

Frieden has proposed an axiomatic formulation of
MFIP and developed an agenda for derivations [2,4],
where the constraint term has been considered as an
equivalent piece of information obtained from FI through
some transform, e.g., the Fourier transform. This has
been named the extreme physical information principle.
However, for the purposes of this paper it is sufficient to
use MFIP in the simple form (3).

The derivation of the time-independent Schrodinger
equation can serve as a simple example of the use of
MFIP (3). Consider a one-dimensional probability distri-
bution p(x), so that p(x)dx is the probability of finding
some particle in the neighborhood dx of the point x, and
p(x)=[g(x)]% i.e., g(x) is an absolute value of a normal-
ized 9 function of the particle. The kinetic energy of the
particle is given by E;, =W —U(x); Wand U (x) are the
total energy of the particle and potential at the point x.
And now principle (3) reads (¢’ =dgq /dx)

fdx[4(q’)2—)»[W—U(x)]q2]=extremum ,  (4a)

and the solution to the problem (4a) (when g vanishes at
infinity for simplicity) is given by

fde 9 9 3 a_zi__
a dq¢ Ox dq’ 9x? dq"”
X {4(g" )P —A[W —U(x)]g*}=0
or
a9 8.3 , & 2
dg 9x 9q’ 9x?aq”’

X {4(g' )P —A[W —U(x)]g?}=0, (4b)

which gives
q"+(A/4)[W—U(x)]g=0, (4c)

and the choice A =8m /#* results in the time-independent
Schrodinger equation (m is a mass of the particle and
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#i=h /2w, where h is the Planck constant). The deriva-
tion of other equations can be more tedious and demands
a sophisticated interpretation of &, ¢ (or g).

According to a physical scenario, MFIP may imply the
minimum or the maximum (an abbreviation EFIP, or ex-
tremum Fisher information principle, is more correct,
but this is a question of words only). A rather subtle in-
vestigation [5] of a variational problem that results in
Maxwell’s equations shows that it can be rewritten as
MFIP, FI being the measure of nonuniformity (rough-
ness, irregularity) of the nonstatistical distribution. For
that, ¥, must be the components of a four-vector poten-
tial depending on the coordinates { of a Minkowskian
space, and the kinetic energy is an interaction energy of
the electromagnetic field. So, FI (1) is a measure of a
nonuniformity of a field “intensity measure.”

That case is also exclusive in that the kinetic energy de-
pends on the field rather than directly on the coordinates
¢, and, therefore, the total kinetic energy is used as a con-
straint rather than the mean one. It should be mentioned
that Eq. (1) implies an additional integration over the
time coordinate as compared to Frieden’s formulation
[5], but this is not significant for finding the extremum.

In this paper an interpretation of Fisher information

based principles is proposed in terms of shift information
(ST) introduced in Sec. II in its simplest form. The use of
SI is shown to remove some arbitrariness of the choice of
Lagrange multipliers in MFIP. A consideration of mul-
tidimensional SI in Sec. III enables one to interpret FI as
a limiting case of SI when the shift is infinitesimal. Sec-
tion IV demonstrates the use of one possible hitherto
uninvestigated constraint and an application of SI based
theory to the case of a relativistic particle without spin.

II. SHIFT INFORMATION

Consider a one-dimensional well-behaved distribution
p (&) describing some physical system. One can evaluate
its nonuniformity (roughness) comparing it with its shift-
ed image p({+A), and using as a disorder measure a
quantity

1(8)= [dgp(&)In[p(£)/p(§+A)], (5)

which can be called shift information. Its mathematical
expression is similar to the Kullback information [6,7].
Let the shift be global, A=const. When A is sufficiently
small one can use the expansion of In[p ({+A)] in a Tay-
lor series,

(6)

2
1(a)=[dg |p Inp —p |Inp +fE[lnp]A+:id§—z[lnp]A2/2+. . ’ ’
—— [ag|pa— |[BE_pn AT
)4 2

(p'=dp/d¢, p”=d?p /d¢*). One can recognize the Fisher’s “intrinsic accuracy” (p’)?/p [8] in the second-order term.
The integral of (p’)?p is the conventional Fisher information [1,2]. The variation of I (A) gives

B3 _23 3 & a
d 35 dp’ g dp”

81(A)=— [d¢6p

A2 ’ "
gTfa’éﬁp[(p /p’*—2p"/p],

p'A—

AZ
—+...
2

(20
» p

0)

to second order in powers of A. So, the FI (multiplied by some factor) is a part of SI that is significant for finding the ex-

tremum, since

A_2 "2 __A_z _a___ii _a_z__ 9 _ ( :)2
y oJ akte /=" fdga d 3’ 8gop” [ p
2
=A7fd§8p[(p’/p>2—2p"/p]ESI(A) .

It should be mentioned that instead of (5) one could use
I(A)= fd{,'p(é‘)1n[p(§)/Vp(§+A)p(§—-A)], which is
equivalent to the elimination of the odd powers from the
Taylor series of In[p(£+A)] in (6), and the result of the
variation of 7 (A) would give the same approximation (7).
This is equivalent also to the averaging over two possible
directions of the shift +A (see also Sec. III below) and
makes the approximation more accurate. As is seen from

Eq. (7) the first-order term in Eq. (6) can be omitted when
defining the variational problems, as it does not influence
the solution. The same can be said about the second-
order term with p"’.

The usefulness of this introduction of SI can be demon-
strated by the derivation of the same time-independent
one-dimensional Schrédinger equation. As p(x) is the
probability density, {=x, so the quantity I(A) is undi-
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mensional, and so must be the kinetic energy. The intrin-
sic energy measure for the particle of mass m is mc?, ¢
being the light velocity. An energy-time uncertainty im-
plies that the particle with energy mc? cannot be con-
sidered as existing for the time period less than #/2mc?,
and a minimum shift value that can be used is

A=c#/2mc*=%/2mec. Solving a problem
A

I(A)—
mc?

Jdx[W—Ux)lp(x)=extremum ,  (8a)

instead of (4a), where A is the minimum physical shift
#i/2mc, one has (p'=dp /dx, p''=dp’' /dx)

d Jd 0 3 9d
fngP dp 0Ox dp' 3x? dp” ]
"2 2
X _(L)_z " A_._ )‘Z(W_U)p =0,
p 2 mc
or
1| # o] A
2| P | <2 |_ _ —
2 | 2mc P p mcz[W Utn]=0,
(8b)
and the substitution p =¢? gives finally
q~+x2h—’;’[W—U(x)]q —0. (80)

Hence, the Lagrange multiplier A=1 can be omitted, in-
stead of being chosen, although the insertion of a divisor
mc? in (8a) was arbitrary. The interchanging of the sub-
stitution and variation gives the same result, but it is not
true for the general case (2).

The kinship of form (5) and Egs. (8) to the second law
of thermodynamics can be illustrated by the following
consideration. The maximum entropy principle is usually
written in the form of a Lagrangian problem, for exam-

ple, [9]

—3p; Inp;, —(A—1)3p; — 3p; S\ fF=extremum . (9a)
i i ik

Here {p;} is a probability distribution over a state space
and S=—3,p;Inp;, is its entropy in units of the
Boltzmann constant kg /In2. The second and third terms
represent the constraints (the normalized distribution,
given coordinates, kinetic energy, correlations, or what-
ever else). Equation (9a) can be written in a form involv-
ing a Kullback information (KI)

Di
exp —}»—zkkf,-k
k

1—3p;In =extremum , (9b)
i

which can be interpreted as follows. The constraints al-
ways introduce a decrease in information [10,11] and
then one always deals with the “distance” between some

disorder measures. As the extremum is a maximum here,
the solution is, by sight, p; =exp(—A— 3 A, fF). This is
exactly ‘“‘the coincidence of the average and most prob-
able distributions” mentioned in [10], p. 44.

Finally, comparison with Eq. (5) shows that the solu-
tion p; here is, in some sense, the shifted probability law
p(&+A). See also Appendix A of [2] for a closely related
approach to that taken in this section.

III. FISHER INFORMATION
AS AN INFINITESIMAL SHIFT INFORMATION

We can generalize now the consideration of Sec.
IT to the case of “multiamplitude” probability density
[Eq. (2)] and many-dimensional parameter
space {§=(&;,...,Ex)}. One can evaluate the nonuni-
formity of p ({) using the information densities

p(&)In[p(§)/p(E+A)],
p(&)In[p(&)/Vp(E+AP(E—A)],

etc. The second one is more appropriate for eliminating
the sense of A direction. The quantity

I1(M)= [dEp(©)In[p(£)/G,] (10)

[where G, represents p({+A), Vp(E+A)p(E—A), or
other proper functions of the shifted image of p(§)] can
be called a shift information. The shift A may be global,
A=const, or local A=A({). For the simplest considera-
tions, it is sufficient to use an infinitesimal shift and get
rid of the sense of A direction, i.e., to make some
“‘deparametrization” of G,. Let G, =Vp(E+A)p(E—A),
so that

i(A)=p In(p/G,)=p Inp— L [Inp (£+A)—Inp (£ —A)]

=——§—2(ajak Inp)A; A — - . (11)
ik

Here 9, =9/9;, {A,}] are the coordinates of A. One
can eliminate A by a limit lim, i (A)/|A|? and average
it over all possible directions by an operation
A =HN:1(1/7r)f0 dé,, so that
A iimoi(A)/lMZ:—(p/2)A2(8j8k Inp) cos¢; cosg,,

= &

=—(p/4)3,(3% Inp) ,
3

cos¢, =A, /|A|. Thus one can simplify the considera-

tion, investigating, instead of I (A), the quantity

I'= [d¢ 4 limi(A)/|AP=— [de2 @2 np), (12
Jdg 4 limia)/1Al fd§4§k‘,(knp) (12)

which can be considered as some type of derivative.
Substitution for p (&) its expression via Eq. (2) gives
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(the Cauchi-Bunjakovsky-Schwarz inequality is used).
Thus

1'51=%fdg§ [z(aktps)z—zlpsaws] , (13)

the equality being achieved for M =1. Both terms in the
right hand side of (13) are the inner products of two vec-
tors.

It can be easily verified that

¢s 2 [z(ak¢s)2 2¢sa Ips ] _—_4zak¢s ’

0

s=1,...,M, 8,)= _.W

3%

)
zag,ag] 3(8,3,9,) ] '

[6(¢,) is an operator with explicitly specified quantity to
be varied.] So the extremum of the estimation (13) is pro-
vided by the functions that simply obey the Laplace equa-
tion (when no constraints are imposed). Instead of using
I’ one can use its estimation via Eq. (13). The further in-
vestigation is a question of interpretation.

In the case when { is a four-dimensional space time, ¥
is an electromagnetic four potential and (3,82 )Y=J is
the four-vector current density; the requirement that I be
extremal is equivalent to the minimum Fisher informa-
tion principle (but with an additional integration over the
time coordinate) resulting in Maxwell’s equations [2,5].

When the quantities 3, or all their first-order deriva-
tives vanish on some closed hypersurface (or at infinity),
one has [2]

I=[dES(3,9,) . (14)
ks

Equation (14) fits into an axiomatic MFIP formulation by
Frieden [2], who used it to derive a variety of equations
and distributions in theoretical physics [1-5] from the
same minimum Fisher information principle. Thus the
term with second derivative can be excluded also in this
case, as was indicated in [6,7], because of the regularity
conditions imposed on a (generalized) probability density.
The similar relation between the Fisher and
“infinitesimal” Kullback information was described in
[6,7] when the support space and parameter one were
different. Thus Fisher information may be thought of as a
measure of totality of distinctions between close shifted

> [ [22¢sak¢s ]Z/p —23 9,3 ¥
k s s

—23 (3 ¢, )2]

22¢sa ¢S~22 3 ¥, )2}

images of the same distribution, the measure being aver-
aged over all possible directions of shift.

Several words about the Fisher information itself are
needed. In 1925, Fisher [8] wrote about the measure of
“intrinsic accuracy” ( —3%In(y)/d6%) (where 6 is a pa-
rameter of a statistical distribution density y), that ‘it
may be equally conceived as the amount of information

” exactly in the sense that Brillouin [10,11] (and many
other authors) discussed the amount of information ob-
tained from the experimental measurement. Taking into
account the shift information, which is some sort of KI,
one makes the kinship between Fisher’s and Brillouin’s
views on experimental accuracy more explicit [12].

IV. NONLINEAR KLEIN-GORDON EQUATION

Apply now the disorder measure I(A) to some vector
field, Y(§)={v,, ..., ¥}, assuming that there exists its
statistical interpretation, such that its intensity measure
defined via Eq. (2) is a probability density. The kinetic
energy can be calculated as in the case of derivation of
the time-independent Schrodinger equation, but the po-
tential depends on the field U = U () rather than on the
coordinates. Such a constraint has not been investigated
yet. Maklng use of Egs. (10)—(14) giving the estimation
of I(A)/A? and assummg § {&r ) ={ict,x,y,2z} to be
the Minkowskian space, one can set a problem

4, M
A2 [dg 3 (39, /08,)*—A [dE[W —U )]

k,s =1
=extremum , (15)

where the first term is SI averaged over all possible direc-
tions of shift in the Minkowskian space time and W is a
total energy of the system. Probability p does not weight
the second integral [compare with Eq. (8a)].

The solution to the problem (15) is

B 8
Jacsy, aws Eagk FER)

AZE =
(9, =9/3&y ), which gives

207 (38 o =57

—AMW—-UW)]

2
aé‘] l

(16a)
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which are the nonlinear Klein-Gordon equations
(s=1,...,M) generalizing the sine-Gordon equation
when M =1, U(¢)<[1—cos(#)], and the ¢* model when
U < (¢?—a)? [13]. Equations (16a) can be rewritten in a
vector form

(16b)

where 0= ,9; is the D’Alembertian operator, and V,

is a gradient in the “internal” space Yy={v,, ..., ¥, }.
One can easily verify that the solution to a problem

with a mean-squared kinetic energy, such as a constraint,

A2 [dES 3y, /3, )
ks

Oyp=(A/2A%)(V,U) ,

- Tn%Z)Z [delw —U TS (¢, *=extremum ,

(17a)

which generalizes the problems [(4a),(8)] to the four-
dimensional relativistic case (i, are assumed to be the
probability amplitudes, p=3M (¢,)%, M =2 is the
probability density, W is a particle energy), is an equation

A

= — —2>
4 (Amc?)?

(W—=UY, (17b)

which is a linear Klein-Fock-Gordon equation (KFG)
[13-15]. For the free relativistic particle W =mc?,
m =my(1—v%/c?)"1/2 is a relativistic mass, m,, is a rest
mass, and v is a particle velocity. Setting the components
of the minimal physical shifts in the Minkowskian space
by the Heisenberg uncertainty principle in the relativistic

case to be Ax =Ay =Az=cAt, At=4#/(kmyc?), |k| <2,

one obtains that AZ=(icAt)>+(Ax)*+(Ay)*+(Az)?
=2#f/myc)*/k?,  ie., AW?2/(mc?AP=Ak2/[2(#/
myc)?]. Denoting a complex wave function by
¢=1,+iv,, for k=V"2, A= —1, one obtains

O¢=(mgc /%) . (17¢)

The choice of “right” shift (for the Lagrangian multi-
plier to be unity) can be conceived as a “normalization”
of SI. On the other hand, such a normalization may be
considered as an argument to set the minimum product
of the conjugate uncertainties in the relativistic case to be
#/V'2 rather than #/2.

Remarkably, in both cases of Schrodinger and KFG
equations, this choice follows from the fundamental un-
certainty principles, one being established rigorously us-
ing FI [2] for the nonrelativistic case. Although the
latter consideration is not completely rigorous, this shows
that the use of SI with small but finite shift is consistent
with basic physical principles.

V. SUMMARY

The introduction of a concept of shift information en-
ables us to ascribe to Fisher information a sense of an
infinitesimally shifted Kullback information, averaged
over all possible directions of shift. The shift information
is a quantitative measure of distinction between the dis-
tribution and its shifted version.

The use of shift information combined with the funda-
mental Heisenberg uncertainty principle to choose the
“right” shift results in the time-independent Schrodinger
and linear KFG equations with the right coefficients. The
Lagrangian multipliers of the constraints in correspond-
ing Lagrangian problems are equal to unity and can be
omitted.
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